
Automating Microsoft Word  FoxTeach 2001 

© 2001, Tamar E. Granor  Page 1 

Session FT- 

Automating Microsoft Word 

Tamar E. Granor, Ph.D. 

Visual FoxPro's Report Designer is fine in many cases, but it's not hard to come up with reports 

that go beyond its capabilities. Automation gives you the ability to use all of Microsoft Word as 

your report writer. This session shows you how to put Word to work for you. It starts with the 

basics of creating a Word automation object, and then explores the Word object model to create 

both simple and complex Word documents. Learn how to send VFP data to Word and format it.  

This session assumes some familiarity with Word, an understanding of object-oriented 

programming, and knowledge of automation fundamentals. 

Starting Word 

To work with Word, you need an object reference to the Word automation server or to a specific 

object in Word. Two Visual FoxPro functions let you access Word. CreateObject() opens a new 

instance of Word and returns a reference to it, like this: 

oWord = CreateObject("Word.Application") 

GetObject() is a little more complex. It takes either of two parameters, which reflect two 

approaches to providing a reference to Word. If you pass it the name of an existing document, it 

checks whether or not Word is already open. If not, it opens Word. Either way, it opens the 

specified document and returns a reference to the document: 

oDocument = GetObject("d:\writing\confs\aut250.doc") 

If you omit the first parameter to GetObject() and specify the Word automation server as the 

second, it looks for an open instance of Word and returns a reference to that instance:  

oWord = GetObject(, "Word.Application") 

If Word isn't open, an error message is generated.  

Word's Object Model 

The key object in Word is Document, which represents a single, open document. The Word 

server has a Documents collection, containing references to all open documents. The server also 

has an ActiveDocument property that points to the currently active document. 

The Document object has lots of properties and methods. Many of its properties are references to 

collections such as Paragraphs, Tables and Sections. Each of those collections contains references 

to objects of the indicated type. Each object contains information about the appropriate piece of 

the document. For example, the Paragraph object has properties like KeepWithNext and Style, as 

well as methods like Indent and Outdent.  

The Word server object, called Application, has its own set of properties and methods, including 

a number of other collections. In addition to ActiveDocument, the Application object's properties 

include Visible, StartupPath, Version and WindowState. The Application object also has 

methods. The simplest is Quit, which shuts down the server. It has several optional parameters – 



Automating Microsoft Word  FoxTeach 2001 

© 2001, Tamar E. Granor  Page 2 

the first indicates what to do if any open documents have been changed and not saved. Other 

methods of the application object convert measurements from one set of units to another, check 

grammar and spelling, and much more.  

Word Visual Basic Help (VBAWRD9.CHM for Word 2000, VBAWRD8.HLP for Word 97) 

contains a diagram of Word's object model. The figure is "live" – when you click on an object, 

you're taken to the Help topic for that object. Figure 1 shows the portion of the object model 

diagram that describes the Document object. 

 

Figure 1. Word Object Model – The Word Visual Basic Help file offers a global view of Word's 

structure. 



Automating Microsoft Word  FoxTeach 2001 

© 2001, Tamar E. Granor  Page 3 

Managing Documents 

The methods for creating, opening, saving and closing documents are fairly straightforward. The 

only complication is in what object provides which method. The methods for creating and 

opening a document belong to the Documents collection. The methods for saving and closing a 

document belong to the Document object. Although confusing at first glance, this actually makes 

sense since you don't have a Document object to work with at the time you create or open a 

document. But when it's time to save or close it, a document reference is available. 

To open an existing document, use the Open method of the Documents collection. Open has 

many parameters, but most of the time, the only one that matters is the first: the name and path of 

the file to open. The Word server doesn't recognize VFP's search path, so you usually need to 

provide the full path to the document, like this: 

oDocument = oWord.Documents.Open("d:\writing\confs\aut250.doc") 

If it's successful, Open returns an object reference to the newly opened document. If the specified 

document doesn't exist, an error is generated and nothing is returned. (Almost all the examples in 

this session assume you have an instance of Word running, with oWord holding a reference to it.) 

To create a new document, use the Add method, which has only two, optional, parameters. The 

important one is the first, which indicates the path to the template on which the new document 

should be based. If it's omitted, the new document is based on the Normal template. (The Normal 

template is the one used when you click on the New button on Word's Standard toolbar.) 

Like Open, Add returns a reference to the newly created document. This line creates a new 

document based on a template called "OfficeFax".  

oDocument = oWord.Documents.Add( ; 

   "C:\WINNT\Profiles\Tamar\Application Data\Microsoft\OfficeFax.DOT") 

As with the file name in Open, the full path to the template is needed.  

The Document object has two methods for saving files. Save saves the document back to its 

current file; if it's never been saved, a Save As dialog box appears. The SaveAs method lets you 

specify the file name (and a lot of other stuff) without seeing a dialog, which is usually what you 

want in automation code. 

If the currently active document has already been saved, this line resaves the document without 

user intervention: 

oWord.ActiveDocument.Save() 

To save the document to a different file or to save a document for the first time without 

displaying a dialog to the user, call SaveAs and pass the file name, like this: 

oWord.ActiveDocument.SaveAs("D:\Documents\ThisIsNew.DOC") 

Be careful. When you pass a file name to SaveAs, it overwrites any existing file without 

prompting. (Of course, SaveAs, like Word's other methods, doesn't respect VFP's SET SAFETY 

setting, since it's not running inside VFP.) 

You can check whether the document has been saved by testing its Saved property. If Saved is 

.T., the document is unchanged. This can be the case either because you've already saved the 

document and haven't changed it since or because it's a new document and it hasn't yet been 

modified. 



Automating Microsoft Word  FoxTeach 2001 

© 2001, Tamar E. Granor  Page 4 

The Name and FullName properties give you an alternative way to check whether a document has 

ever been saved. When you create a new document, Word assigns a name in the form 

"Documentn" where n is a number. When you save the document, you can give it a more 

meaningful name, as well as specifying the file path. The Name property of the Document 

contains just the file stem with no path or extension. The FullName property contains the 

complete file name, including path and extension. However, before the file is saved for the first 

time, both Name and FullName contain the same string, the initial document name assigned by 

Word. You can use code like this to figure out whether to use Save or SaveAs: 

WITH oWord.ActiveDocument 

  IF .Name = .FullName 

    * Prompt user to get a name,  

    * then: 

    .SaveAs( cFileName ) 

  ELSE 

    .Save 

  ENDIF 

ENDWITH 

To close an open document, call the document's Close method: 

oDocument.Close() 

or: 

oWord.ActiveDocument.Close() 

Accessing Parts of a Document 

Most of what you want to do with Word involves adding to, modifying or reading a document, 

whether it's a new document you're building or an existing document you're modifying. There are 

a variety of ways to do these things, but the key to just about all of them is the Range object and, 

to a lesser extent, the Selection object. 

The Selection object represents the currently highlighted (that is, selected) portion in a document. 

If nothing is highlighted, Selection refers to the insertion point. There's only one Selection object, 

accessed directly from the Word application object. For example, to find out how many 

paragraphs are in the current selection, you can use this code: 

nParagraphs = oWord.Selection.Paragraphs.Count 

A Range object can represent any portion of a document. Ranges are not the same as the 

Selection area. You can define or modify Ranges without affecting the current Selection. You can 

even define multiple ranges for a document, whereas only one Selection object is available for 

each document. Ranges are very useful for repeatedly referencing specific portions of a 

document. 

Ranges can be obtained in many ways. Many Word objects, like Sentence and Paragraph, have a 

Range property that contains an object reference to a Range object for the original object. For 

example, to create a Range from the third paragraph of the active document, you can use: 

oRange = oWord.ActiveDocument.Paragraphs[3].Range 

The Document object has a Range method that lets you specify a range by character position. For 

example, to get a reference to a Range containing the 100
th
 to 250

th
 characters in the active 

document (probably not a particularly useful range), use: 

oRange = oWord.ActiveDocument.Range(100,250) 



Automating Microsoft Word  FoxTeach 2001 

© 2001, Tamar E. Granor  Page 5 

Document's Content property contains a reference to a Range consisting of the entire main 

document (the body of the document without headers, footers, footnotes, and so on). So the next 

two commands are equivalent: 

oRange = oWord.ActiveDocument.Range() 

oRange = oWord.ActiveDocument.Content 

Beware: for a large document, creating such a variable can take a significant amount of time.  

It's easy to convert a Range object to a Selection, and vice-versa. Like many other objects, 

Selection has a Range property, which provides a Range object from the Selection. Similarly, the 

Range object has a Select method that highlights the range's contents, turning it into the Selection. 

For example, to highlight the range from the previous example, use: 

oRange.Select() 

Selection and Range seem quite similar and are in many ways, but there are differences. The 

biggest, of course, is that you can have multiple Ranges, but only one Selection. In addition, 

working with a Range is usually faster than working with a Selection. On the whole, Word VBA 

experts recommend using Range rather than Selection wherever possible. The main reason is that 

using Selection is essentially duplicating screen actions with code; Range lets you operate more 

directly. Word's Macro Recorder tends to use the Selection object; this is one thing to be aware of 

when converting Word macros to VFP code.  

Manipulating Text 

The Text property of Range and Selection contains whatever text is in the specified area. To bring 

document contents into FoxPro, create an appropriate Range and read its Text property, like this: 

oRange = oWord.ActiveDocument.Paragraphs[7].Range 

cParagraph7 = oRange.Text 

Text also lets you add or change the document contents. You can add text by assigning it to the 

Text property.  

oRange.Text = "This is a new sentence." 

You can also add text to whatever's already there. Simple text manipulation does the trick. 

oRange.Text = oRange.Text + "Add text at the end." 

or  

oRange.Text = "Add text at the beginning " + oRange.Text  

Another possibility is to read text into VFP, manipulate it in some way and write back.  

cMakeUpper = oRange.Text 

cMakeUpper = UPPER(cMakeUpper) 

oRange.Text = cMakeUpper 

That example can be shortened to a single line, like this: 

oRange.Text = UPPER(oRange.Text) 

While you can send VFP data to Word by manipulating the Text property, that isn't really the best 

way to do it. There are a number of Word methods designed for adding text to a range. The 

method you'll use the most is InsertAfter – it adds the text you pass to the end of the range and 

enlarges the range to include the new text. (There's also a corresponding InsertBefore method that 

adds the text at the beginning of the range.) InsertParagraphAfter adds a paragraph mark at the 

end of the range and expands the range to include it. 

The following code sends the data from a record to a new, blank document: 



Automating Microsoft Word  FoxTeach 2001 

© 2001, Tamar E. Granor  Page 6 

USE _samples + "\TasTrade\Data\Customer" 

 

LOCAL oDocument, oRange 

oDocument = oWord.Documents.Add() 

oRange = oDocument.Range() 

 

oRange.InsertAfter(Customer_ID + ": " + Company_Name ) 

oRange.InsertParagraphAfter() 

oRange.InsertAfter("Attn: " + TRIM(Contact_Name) + " - " + Contact_Title ) 

oRange.InsertParagraphAfter() 

oRange.InsertAfter(Address ) 

oRange.InsertParagraphAfter() 

oRange.InsertAfter(TRIM(City) + " " + TRIM(Region) + Postal_Code ) 

oRange.InsertParagraphAfter() 

oRange.InsertAfter(UPPER(Country)) 

Figure 2 shows the resulting document. 

 

Figure 2. This return address can be sent to Word many different ways. In this case, with no 

special formatting involved, the fastest is to build the whole string in VFP, then send it to Word. 

Several other methods help you navigate within the range or document, so that text can be added 

exactly where you want it. One of the simplest is the Move method, which changes the 

boundaries of the range or selection. 

Move accepts two parameters. The first indicates the unit of movement – you can move by 

characters, words, paragraphs, rows in a table, or the whole document. The second parameter tells 

how many of the specified units to move – a positive number indicates forward movement 

(toward the end of the document), while a negative number means backward movement (toward 

the beginning of the document).  

In all cases, the range or selection is reduced (or "collapsed," in Word VBA terms) to a single 

point before being moved. While collapsing a range or selection sounds dire, it's not. The text 

contained in the range/selection remains in the document—only the extent of the range or 

selection is changed. When moving forward, the range or selection is reduced to its end point, 

then moved; when moving backward, it's reduced to its beginning point before moving. You don't 

need to do anything special afterward. For the automation programmer, the key issue is to 

understand where in the range movement begins. 

Constants from the wdUnits group are used for the units of movement. Table 1 shows the values 

for this group that can be passed to the Move method. (Keep in mind that Word's constants are 

not available in VFP. You have to #DEFINE them before using them.) 

Table 1. Word units. The constants in the wdUnits group represent portions of a document. 

Constant Value Description 
wdCharacter 1 One character. 



Automating Microsoft Word  FoxTeach 2001 

© 2001, Tamar E. Granor  Page 7 

wdWord 2 One word. 

wdSentence 3 One sentence. 

wdParagraph 4 One paragraph. 

wdSection 8 One section of a document. (Word allows you to divide documents 

into multiple sections with different formatting.) 

wdStory 6 The entire length of whichever part of the document you're in. 

Word considers the main body of the document to be one "story," 

the header to be another "story," the footnotes to be a third and so 

forth. 

wdCell 12 One cell in a table. 

wdColumn 9 One column of a table. 

wdRow 10 One row of a table. 

wdTable 15 The entire space of a table. 

To create a range at the end of the document, you can use this code: 

oRange  = oWord.ActiveDocument.Range() 

oRange.Move( wdStory, 1) 

The Move method provides another way to create the return address in Figure 2: 

#DEFINE CR CHR(13) 

#DEFINE wdStory 6 

 

USE _samples + "\TasTrade\Data\Customer" 

 

LOCAL oDocument, oRange 

oDocument = oWord.Documents.Add()  && Use the Normal template 

 

oRange = oDocument.Range() 

 

oRange.Text = Customer_ID + ": " + Company_Name + CR 

oRange.Move(wdStory) 

oRange.Text = "Attn: " + TRIM(Contact_Name) + " - " + Contact_Title + CR 

oRange.Move(wdStory) 

oRange.Text = Address + CR 

oRange.Move(wdStory) 

oRange.Text = TRIM(City) + " " + TRIM(Region) + Postal_Code + CR 

oRange.Move(wdStory) 

oRange.Text = UPPER(Country) 

The Collapse method lets you explicitly reduce a range or selection to a single point. It takes one 

parameter, indicating the direction of the collapse. Passing the constant wdCollapseEnd (with a 

value of 0) collapses the range or selection to its end point (the point closest to the end of the 

document). Passing wdCollapseStart (whose value is 1) reduces the range or selection to its 

starting point. As with the Move method, Collapse doesn't remove content from the range. It 

changes the definition of the range to just a single point at what was previously either the end or 

beginning of the range. 

The example can be rewritten yet again to use Collapse to control the range: 

#DEFINE CR CHR(13) 

#DEFINE wdCollapseEnd 0 

 

USE _samples + "\TasTrade\Data\Customer" 

 

LOCAL oDocument, oRange 

oDocument = oWord.Documents.Add()  && Use the Normal template 

oRange = oDocument.Range() 

 

oRange.Text = Customer_ID + ": " + Company_Name + CR 

oRange.Collapse(wdCollapseEnd) 

oRange.Text = "Attn: " + TRIM(Contact_Name) + " - " + Contact_Title + CR 



Automating Microsoft Word  FoxTeach 2001 

© 2001, Tamar E. Granor  Page 8 

oRange.Collapse(wdCollapseEnd) 

oRange.Text = Address + CR 

oRange.Collapse(wdCollapseEnd) 

oRange.Text = TRIM(City) + " " + TRIM(Region) + Postal_Code + CR 

oRange.Collapse(wdCollapseEnd) 

oRange.Text = UPPER(Country) 

Finally, it's worth commenting that, for this particular task, the fastest approach of all is to 

concatenate all the strings in VFP, then send one string to the document: 

USE _samples + "\TasTrade\Data\Customer" 

 

LOCAL oDocument, oRange 

oDocument = oWord.Documents.Add()  && Use the Normal template 

oRange = oDocument.Range() 

LOCAL cText  

cText = "" 

 

cText = Customer_ID + ": " + Company_Name + CR 

cText = cText + "Attn: " + TRIM(Contact_Name) + " - " + Contact_Title + CR 

cText = cText + Address + CR 

cText = cText + TRIM(City) + " " + TRIM(Region) + Postal_Code + CR 

cText = cText + UPPER(Country) + CR 

     

oRange.Text = "" 

oRange.InsertAfter(cText) 

With VFP's speed at constructing strings, this version takes only one-third to one-quarter as long 

as the other approaches. 

Formatting 

If all we could do was send text to Word and read the text already there, Automation would be 

useful, but not worth too much trouble. However, there's much more to automating Word than 

just sending and receiving text. One of the big benefits of using Word, rather than VFP, is the 

ability to apply complex formatting to documents. 

Word allows documents to be formatted in a number of ways and the objects available for 

formatting reflect the way Word structures its commands. For example, the Font object contains 

properties for the settings found in Word's Font dialog (Format|Font on the menu). The 

ParagraphFormat object controls the settings found in the Paragraph dialog, such as indentation, 

spacing and alignment. Similarly, the settings from the Page Setup dialog are controlled by the 

PageSetup object. Style objects represent the preformatted and user-defined styles available in the 

document. These four objects manage most of the frequently used settings. Other objects control 

other aspects of formatting. 

Setting Fonts 

Fonts in Word are controlled by the Font dialog on the Format menu (shown in Figure 3). That 

dialog controls the font name, size, style (such as bold, italic, underline, and so forth), color, and 

effects (like strikethrough, superscripts and subscripts, and much more). It also controls more 

esoteric options such as kerning, animation of or around text, the vertical position of text with 

respect to the baseline, spacing between characters, and more. The Font object manages these 

options.  



Automating Microsoft Word  FoxTeach 2001 

© 2001, Tamar E. Granor  Page 9 

 

Figure 3. Specifying Fonts. The Font dialog controls font, size, style, and color, as well as 

unusual options like kerning and spacing between characters. In Automation, all of these features 

are managed by the Font object. 

Range, Selection and Style (discussed in Working with Styles) as well as many other objects each 

have a Font property that points to a Font object. Changing the properties of the Font object 

modifies the font of that portion of the document. For example, to change all the customer 

information in Figure 2 to 12-point Arial, you can use this code: 

oRange = oDocument.Range() 

oRange.Font.Name = "Arial" 

oRange.Font.Size = 12 

To simplify matters, just set the desired font before sending the text to the document. Add the two 

lines that set the font properties to the example program right after the line that sets oRange (as 

shown here) and the document will be created with 12-point Arial to begin with. 

In fact, this isn't the best way to set the font for a whole document. It's better to use a template 

where the font of the Normal style has been set as needed. See Working with Styles below. 

Table 2 lists Font properties you're likely to want to work with, along with Word constants for 

them, where appropriate. 

Table 2. Font Properties. The Font object controls the appearance of the font from the font face 

to its size, style and much more. This table shows the more common properties. Check Help for 

more unusual settings. 

Property Type Description 
Name Character The name of the font. 

Size Numeric The size of the font in points. 

Bold Numeric or 

Logical 

Indicates whether the text is bold. 

Italic Numeric or 

Logical 

Indicates whether the text is italic. 



Automating Microsoft Word  FoxTeach 2001 

© 2001, Tamar E. Granor  Page 10 

Underline Numeric The type of underline. 

wdUnderlineNone 0 wdUnderlineDouble 3 

wdUnderlineSingle 1 wdUnderlineDotted 4 

wdUnderlineWords 2 wdUnderlineThick 6 
 

Superscript, 

Subscript 

Numeric or 

Logical 

Indicates whether the text is superscript or subscript. 

It's possible for the text in a range (or whatever area the font object covers) to have more than one 

font setting. When that happens, the various numeric properties get the value wdUndefined 

(9999999). (That's also why properties that you'd expect to be logical are listed as numeric or 

logical.) Font.Name is the empty string in that situation. Although these logical properties (like 

Bold and Italic) can be set by assigning VFP's logical values .T. and .F., they can't be compared to 

logical values. Code like: 

IF oFont.Bold 

fails with the error "Operator/operand type mismatch". That's because of Bold's dual 

numeric/logical capabilities. When you assign logical values, Word translates them somewhere 

along the way, but for comparison, you have to use the numeric values.  

Formatting paragraphs 

Paragraphs are a key concept in Word. Much of Word's formatting can be thought of as being 

stored "in" the marker that follows each paragraph. That's why moving text sometimes changes 

its formatting. If you fail to take the paragraph marker along, the moved text picks up the 

formatting of the new location. 

At the paragraph level, you can determine alignment of text (left, right, centered or full 

justification), various kinds of indentation (both amount and type), spacing of lines and 

paragraphs, handling of widows and orphans, and much more. Word allows regular indentation 

from both the left and right margins, as well as first line indents and hanging indents. 

Interactively, all of this is managed by the Paragraph dialog on the Format menu (shown in 

Figure 4). Behind the scenes, the ParagraphFormat object controls these settings. 

 



Automating Microsoft Word  FoxTeach 2001 

© 2001, Tamar E. Granor  Page 11 

Figure 4.The Paragraph Format dialog. This page lets you indicate alignment, indentation and 

spacing. The second page handles widow and orphan control and automatic hyphenation. The 

ParagraphFormat object controls these settings for automation.  

Range, Selection and Style, among others, have a ParagraphFormat object, accessed through the 

same-named Property. The Paragraph object has a Format property that accesses a 

ParagraphFormat object.  

Table 3 shows commonly used properties of the ParagraphFormat object and frequently used 

constant values for them. Like many of Word's objects, ParagraphFormat has only a few 

methods; none are likely to be useful in most automation code. 

Table 3. ParagraphFormat Properties. Paragraphs are a key entity in a document. See Help for 

more esoteric settings. 

Property Type Description 
Alignment Numeric The alignment of text in the paragraph. 

wdAlignParagraphLeft 0 wdAlignParagraphRight 2 

wdAlignParagraphCenter 1 wdAlignParagraphJustify 3 
 

LeftIndent Numeric The indentation of the left edge of this paragraph from the left 

margin in points. 

RightIndent Numeric The indentation of the right edge of this paragraph from the right 

margin in points. 

FirstLineIndent Numeric The indentation of the first line of the paragraph. This property 

determines whether the paragraph has the first line indented or 

"outdented" (providing a hanging indent). Set a positive value to 

indent the first line, 0 to keep the first line flush with the rest of 

the paragraph or a negative value for a hanging indent. Note that, 

with a hanging indent, the first line doesn't move to the left; 

subsequent lines move to the right. 

SpaceBefore, 

SpaceAfter 

Numeric The amount of white space (known as leading) before and after 

the paragraph, in points.  

LineSpacingRule Numeric The kind of line spacing in effect. This setting can entirely 

determine the line spacing or it can set the stage for LineSpacing. 

wdLineSpaceSingle 0 wdLineSpaceAtLeast 3 

wdLineSpaceDouble 2 wdLineSpace1pt5 1 

wdLineSpaceExactly 4 wdLineSpaceMultiple 5 
 

LineSpacing Numeric When LineSpacingRule is wdLineSpaceAtLeast, 

wdLineSpaceExactly, or wdLineSpaceMultiple, the actual line 

spacing in points. 

WidowControl Numeric or 

Logical 

Indicates whether the first and last lines of the paragraph are kept 

on the same page as the rest of the paragraph. 

KeepTogether Numeric or 

Logical 

Indicates whether the entire paragraph is kept on a single page. 

KeepWithNext Numeric or 

Logical 

Indicates whether the paragraph is kept on the same page with 

the paragraph that follows it. 

Hyphenation Numeric or 

Logical 

Indicates whether the paragraph is hyphenated automatically 

This example sets the first paragraph in the range oRange to have a 0.5" first line indent, widow 

and orphan control, double spacing, and full justification: 

#DEFINE wdAlignParagraphJustify 3 

#DEFINE wdLineSpaceDouble 2 

 

WITH oRange.Paragraphs[1].Format 

  .FirstLineIndent = oWord.InchesToPoints( .5 ) 

  .WidowControl = .T. 

  .Alignment = wdAlignParagraphJustify 

  .LineSpacingRule = wdLineSpaceDouble 



Automating Microsoft Word  FoxTeach 2001 

© 2001, Tamar E. Granor  Page 12 

ENDWITH 

This example triple spaces a range: 

#DEFINE wdLineSpaceMultiple 5 

 

WITH oRange.ParagraphFormat 

  .LineSpacingRule = wdLineSpaceMultiple 

  .LineSpacing = oWord.LinesToPoints( 3 ) 

ENDWITH 

Working with Styles 

While it's appropriate to manually adjust the formatting of a word, sentence or paragraph here or 

there, the most effective way to use Word is to take advantage of styles, which are named formats 

that you can apply to a portion of a document. When you're working interactively in Word, you 

can see the style for the insertion point or currently highlighted text in the first dropdown on the 

Formatting toolbar.  

Word has two kinds of styles: paragraph styles and character styles. Character styles are used for 

fragments and control only a few settings, primarily font-related. Paragraph styles, as the name 

implies, apply to entire paragraphs and include a lot more options. Paragraph styles can specify 

font and paragraph formatting, as well as tab settings and much more. In the Style dialog 

available from Word’s Format menu (Figure 5), Paragraph styles are preceded with a paragraph 

marker while character styles begin with an underlined "a".  

 

Figure 5. Creating and choosing styles. Word's Style dialog lists the available styles. Paragraph 

styles are preceded by a paragraph symbol, while an underlined "a" precedes Character styles. 

Note in the Description that the style is described in terms of another – its "base style". 

Using styles is much like using classes in an object-oriented language. They make it easy to 

enforce uniformity throughout and across documents and let you change the characteristics of 

sections of text with a single change. Word's styles offer some other benefits, as well. For 

example, each paragraph style sets the default style for the paragraph to follow.  

The Document object includes a Styles collection, containing one Style object for each of the 

styles stored in the document. You can add your own styles using the Style collection’s Add 

method. Various objects' Style properties point to Style objects.  



Automating Microsoft Word  FoxTeach 2001 

© 2001, Tamar E. Granor  Page 13 

What this means is that, rather than writing a lot of code to change fonts and sizes, and to set 

alignment and leading and other things like that, you can simply define a few custom styles or 

modify built-in styles, then apply them to your documents as needed. For example, this code 

modifies the Normal style, which is always available, to use 16-point centered Garamond Italic: 

#DEFINE wdStyleNormal –1 

#DEFINE wdAlignParagraphCenter 1 

 

WITH oWord.ActiveDocument.Styles[ wdStyleNormal ] 

  WITH .Font 

    .Name = "Garamond" 

    .Size = 16 

    .Italic = .T. 

  ENDWITH 

  .ParagraphFormat.Alignment = wdAlignParagraphCenter 

ENDWITH 

To apply an existing style to a portion of a document, set the Style property for the Range or 

Paragraph to a built-in style using a constant, or to the name of a custom style. Table 4 lists the 

constants for some of the more commonly used built-in styles. This example applies the Heading 

1 style to the range referenced by oRange: 

#DEFINE wdStyleHeading1 -2 

oRange.Style = oWord.ActiveDocument.Styles[ wdStyleHeading1 ] 

Table 4. Built-in Styles. Word has over 100 built-in styles, each referenced by a defined constant. 
The table shows just a few of the most common. Use the Object Browser to find the rest. 

Constant Value Constant Value 
wdStyleNormal -1 wdStyleHeading1 -2 

wdStyleBodyText -67 wdStyleHeading2 -3 

wdStyleDefaultParagraphFont -66 wdStyleHeading3 -4 

Creating Custom Styles 

In addition to modifying the built-in styles, you can create your own custom styles. To add a new 

style, use the Add method of the Styles collection. Add takes two parameters, the name of the 

new style, and the Word constant indicating whether it’s a paragraph style 

(wdStyleTypeParagraph = 1) or character style (wdStyleTypeCharacter = 2). 

Every style is based on an existing style. By default, new paragraph styles are based on the 

Normal style and new character styles are based on the Default Character Font style. The 

BaseStyle property indicates which style another style inherits from, however.  

Whatever style BaseStyle points to, all other changes to the style's properties use the BaseStyle as 

their point of reference. In the Style dialog (Figure 5), the style's characteristics are described as 

"<The base style>"+"<various other characteristics>". The Description property contains the 

same information. So, much like classes in OOP, changes to the base style change styles based on 

it. 

Table 5 lists key properties of Style, along with significant constant values. 

Table 5. Style Counts. Styles are Word's version of OOP. They offer a way to provide uniform 

formatting within and across documents. 

Property Type Description 
BaseStyle Character, The name, constant value or pointer to the style on which this 



Automating Microsoft Word  FoxTeach 2001 

© 2001, Tamar E. Granor  Page 14 

Numeric or 

Object 

style is based. See Table 4 and Help or the Object Browser 

for constant values for built-in styles. 

Type Numeric Indicates whether this is a paragraph or character style. 

wdStyleTypeParagraph 1 wdStyleTypeCharacter 2 
 

Builtin Logical Indicates whether this is a built-in style. 

Description Character The description of the style (as shown in the Style dialog). 

Font Object Pointer to a Font object for the style. 

ParagraphFormat Object  Pointer to a ParagraphFormat object for the style. 

Borders Object  Pointer to a Borders collection for the style. 

Shading Object  Pointer to a Shading object for the style. 

NextParagraphStyle Character, 

Numeric or 

Object  

The name, constant value or pointer to the style for the 

paragraph to follow this paragraph, for paragraph styles. 

This example takes the simple customer address document in Figure 2 and begins to create a 

document worthy of Word. It creates several new styles to do the job. In practice, you could use 

the built-in Normal and Heading X (there are multiple heading levels) styles for this document, 

redefining them as needed. But the example shows how easy it is to create new styles. (You'll 

find this program as Styles.Prg in the materials for this session.) 

* Styles.PRG 

* © 2000, Tamar E. Granor and Della Martin 

* From:  Microsoft Office Automation with Visual FoxPro 

* Hentzenwerke Publishing. www.hentzenwerke.com 

 

* Create a formatted document by sending data from one record. 

* Demonstrates Style objects, but it's more likely the needs here 

* could be met by existing styles. 

 

#DEFINE CR CHR(13) 

#DEFINE wdStyleTypeParagraph 1 

#DEFINE wdStyleNormal -1 

#DEFINE wdAlignParagraphLeft 0 

#DEFINE wdAlignParagraphCenter 1 

#DEFINE wdCollapseEnd 0 

 

USE _Samples + "TasTrade\Data\Customer" 

 

LOCAL oWord, oDocument, oRange 

LOCAL oBodyStyle, oMajorHeadingStyle, oMinorHeadingStyle 

 

oWord = CreateObject("Word.Application") 

oWord.Visible = .T. 

oDocument = oWord.Documents.Add()  && Use the Normal template 

oRange = oDocument.Range() 

 

* Set up styles. Base body style on Normal. 

oBodyStyle = oDocument.Styles.Add( "Body", wdStyleTypeParagraph ) 

WITH oBodyStyle 

   * This line is overkill since it's the default 

   .BaseStyle = oDocument.Styles[ wdStyleNormal ]  

   WITH .Font 

      .Name = "Arial" 

      .Size = 12 

   ENDWITH 

    

   WITH .ParagraphFormat    

      * These are fairly normal defaults, so these lines 

      * may not be necessary 

      .Alignment = wdAlignParagraphLeft 

      .SpaceAfter = 0 

   ENDWITH 



Automating Microsoft Word  FoxTeach 2001 

© 2001, Tamar E. Granor  Page 15 

ENDWITH 

 

* Major heading is big and centered. 

oMajorHeadingStyle = oDocument.Styles.Add( "MajorHeading", 

wdStyleTypeParagraph) 

WITH oMajorHeadingStyle 

   .BaseStyle = oBodyStyle 

   .Font.Size = 20 

 

   WITH .ParagraphFormat 

      .Alignment = wdAlignParagraphCenter 

      .SpaceAfter = 6  && leave a line after 

      .KeepWithNext = .T.  && include at least one line of next  

                           && paragraph before new page 

      .KeepTogether = .T.  && keep the whole paragraph together 

   ENDWITH 

ENDWITH 

 

* Minor heading is just big. 

oMinorHeadingStyle = oDocument.Styles.Add("MinorHeading", ; 

                                          wdStyleTypeParagraph ) 

WITH oMinorHeadingStyle 

   .BaseStyle = oBodyStyle 

   .Font.Size = 16 

ENDWITH 

 

* Now create customer report 

* First, our company info centered at the top 

oRange.Style = oMajorHeadingStyle 

oRange.InsertAfter("Automation Sample Company" + CR) 

oRange.InsertAfter("Factory Blvd." + CR) 

oRange.InsertAfter("Robotville, PA 19199" + CR) 

 

* Now leave some blank space, then put info about this customer 

oRange.Collapse( wdCollapseEnd ) 

oRange.End = oRange.End + 1 && to allow assignment to font 

oRange.Style = oBodyStyle 

oRange.InsertParagraphAfter( ) 

oRange.InsertParagraphAfter( ) 

 

* Use minor heading for customer id and name 

* Put customer id in bold 

oRange.Collapse( wdCollapseEnd ) 

oRange.End = oRange.End + 1 && to allow assignment to font 

oRange.Style = oMinorHeadingStyle 

oRange.InsertAfter(Customer_ID + ": " + TRIM(Company_Name) + CR) 

oRange.Words[1].Font.Bold = .t. 

 

* Regular body style for address info 

oRange.Collapse( wdCollapseEnd )  

oRange.End = oRange.End + 1 && to allow assignment to font 

oRange.Style = oBodyStyle 

oRange.InsertAfter(TRIM(Contact_Title) + ":" + TRIM(Contact_Name) ; 

              + CR) 

oRange.InsertAfter(TRIM(Address) + CR) 

oRange.InsertAfter(TRIM(City) + " " + TRIM(Region) + ; 

              Postal_Code + CR) 

oRange.InsertAfter(UPPER(TRIM(Country)) + CR ) 

* Extra line for spacing 

oRange.InsertParagraphAfter( ) 

 

* Back to minor heading for phone number 

oRange.Collapse( wdCollapseEnd ) 



Automating Microsoft Word  FoxTeach 2001 

© 2001, Tamar E. Granor  Page 16 

oRange.End = oRange.End + 1 && to allow assignment to font 

oRange.Style = oMinorHeadingStyle 

oRange.InsertAfter( "Phone: " + TRIM(Phone) + CR) 

 

* Fax number in regular body style 

oRange.Collapse( wdCollapseEnd ) 

oRange.End = oRange.End + 1 && to allow assignment to font 

oRange.Style = oBodyStyle 

oRange.InsertAfter( "Fax:   " + TRIM(Fax) + CR ) 

Note the use of the Words collection to bold only the customer id rather than the whole line. 

Figure 6 shows the resulting document in Word. 

 

Figure 6. Using Styles. Rather than formatting every item independently, styles let you define and 

name sets of formatting characteristics, then apply them uniformly within and across documents. 

Styles can be considered OOP for formatting. 

It's worth noting that the code in the example is divided almost exactly evenly between formatting 

the styles and putting the data in the document. But far more lines would have been needed to 

perform the same formatting without using styles. Furthermore, consider what would be needed 

to add more information for the same customer. Once the styles are defined, they can be used 

over and over. With 42 lines of code, we have three styles that can be applied wherever we need 

them, no matter how many more lines of code we write to send text to the document.  

Output 

Producing attractive documents is a good start, but users usually want output of some sort, too. 

Word has a number of methods for producing output. In the interactive product, they're collected 

on the File menu in the Print Preview and Print menu options. 



Automating Microsoft Word  FoxTeach 2001 

© 2001, Tamar E. Granor  Page 17 

Printing 

The PrintOut method of the Document object automates printing. It accepts a huge number of 

parameters. Fortunately, all parameters are optional and you won't need most of those parameters 

for normal processing. Unfortunately, the ones you're most likely to need are in the middle of the 

list rather than up front. The key parameters for most situations are shown here. (Incredibly, there 

are still eight more parameters after these.) 

oDocument.PrintOut( lBackground, , nPrintRangeType, cFileName, cFrom, cTo, ,  

                    cCopies, cPageRange, , lPrintToFile) 

 

lBackground Logical Indicates whether or not to print in the background, continuing with other code while 

printing. 

nPrintRangeType Numeric Indicates which part of the document to print. See below. 

cFileName Character If printing to file, the filename, including path, of the destination file. 

cFrom, cTo Character If nPrintRangeType is wdPrintFromTo, the beginning and end of the print range. See 

below. 

cCopies Character The number of copies to print. 

cPageRange Character If nPrintRangeType is wdPrintRangeOfPages, the print range. See below. 

lPrintToFile. Logical Indicates whether to print to a file. 

The syntax reflects two different approaches to specifying the pages to be printed. The 

nPrintRangeType parameter determines which, if either, is used. The valid constant values are 

wdPrintAllDocument (0), wdPrintSelection (1), wdPrintCurrentPage (2), wdPrintFromTo (3), and 

wdPrintRangeOfPages (4). When wdPrintFromTo is passed, pass values for cFrom and cTo as 

the fifth and sixth parameters, respectively. Note that, for reasons known only to Microsoft, 

they're passed as characters. For example, to print three copies of pages 4 to 10 of a document 

referenced by oDocument, use: 

oDocument.PrintOut( , , wdPrintFromTo, , "4", "10", , "3") 

The wdPrintRangeOfPages choice lets you specify a single string and has more flexibility. In that 

case, pass a value for cPageRange as the eighth parameter - it can include multiple comma-

separated values; each may include a range. For example, "3, 4-6, 12". 

To print to a file, you have to specify both the file name and a flag that you're printing to file, like 

this: 

oDocument.PrintOut( , , , "fileoutput", , , , , , , .t.) 

The resulting file is ready to print, complete with printer codes. Keep in mind that the file is 

stored in Word's current directory by default, so it's a good idea to provide the full path.  

Be forewarned that printing to file sets the Print to File checkbox in the Print dialog and leaves it 

set. Omitting that parameter in a subsequent call to PrintOut defaults to .T.; you have to explicitly 

pass .F. to print to the printer. 

Print Preview 

Perhaps all your users want is to see how the document will look when printed. That's easy. Just 

call the Document object’s PrintPreview method. That switches Word to PrintPreview mode.  

Of course, that's only useful if Word is visible. If Word is hidden, it doesn't do any good. Making 

Word visible is as easy as setting the Application’s Visible property to .T. Better yet, if you've 

been doing everything in the background and now you're ready to show the user what you've been 

up to, call PrintPreview, make Word visible, then call Word's Activate method. That'll bring 

Word to the front. Try it like this: 



Automating Microsoft Word  FoxTeach 2001 

© 2001, Tamar E. Granor  Page 18 

oDocument.PrintPreview  && Get the document ready for the user to see 

oWord.Visible = .t.     && Show word 

oWord.Activate()        && Bring it to the front 

Regardless of whether you're keeping Word hidden most of the time or showing it all along, when 

you're done with Print Preview, you turn it off by calling the ClosePrintPreview method of the 

Document object. 

Using Word's Tables 

Word's tables seem like a natural fit for representing Visual FoxPro data. A row can represent a 

record, with each column representing a field. What Word buys you is the ability to format the 

data and the table itself in sophisticated ways, well beyond the capabilities of FoxPro's Report 

Designer, as well as letting users manipulate the results or produce output in alternative formats. 

A table can be formatted as a whole, or individual cells can be separately formatted. Borders of 

tables and cells can be visible or invisible, and can take on a range of sizes and styles. (The 

details of borders and shading are beyond the scope of this session – see Word VBA Help for 

information on the Border and Shading objects.) Both columns and rows can be individually 

sized.  

The object hierarchy for tables is a little confusing. Each document has a Tables collection, which 

in turn contains individual Table objects. The Table object contains both Rows and Columns 

collections, which contain Row and Column objects, respectively. Those objects each have a 

Cells collection that references the individual cells in the row or column, each represented by a 

Cell object. While the Table object doesn't have a Cells collection, the individual Cell objects can 

be accessed using the Table's Cell method, which accepts row and column number parameters. 

Here are several ways to refer to the cell in the third row and fourth column of the first table in 

the active document: 

oWord.ActiveDocument.Tables[1].Rows[3].Cells[4] 

oWord.ActiveDocument.Tables[1].Columns[4].Cells[3] 

oWord.ActiveDocument.Tables[1].Cell[3,4] 

Interactively, you can add a table by choosing Table | Insert | Table from the menu, which brings 

up the dialog in Figure 7.  

 

Figure 7. Adding a table. To add a table interactively, you specify the number of columns and 

rows and, if you want, whether the columns should resize automatically to fit their contents. You 

can also specify a predefined format for the table. 



Automating Microsoft Word  FoxTeach 2001 

© 2001, Tamar E. Granor  Page 19 

With Automation, since Tables is a collection, it's not surprising that the way to add a table to a 

document is to call the Add method of that collection. It takes several parameters: 

oDocument.Tables.Add( oRange, nRows, nColumns, nTableBehavior, nAutoFit ) 

 

oRange Object Reference to a range indicating where to insert the new table. 

nRows Numeric The number of rows in the new table. 

nColumns Numeric The number of columns in the new table. 

nTableBehavior Numeric A constant indicating whether the table automatically resizes to fit its 

contents. 

wdWord8TableBehavior 0 Don't resize automatically.  

wdWord9TableBehavior 1 Resize automatically. 
 

nAutoFit Numeric If nTableBehavior is wdWord9TableBehavior, indicates which 

algorithm is used to resize the cells.  

wdAutoFitFixed 0 Fixed column width 

wdAutoFitContent 1 Size cells to content 

wdAutoFitWindow 2 Size table to full width of window 
 

The last two parameters are optional. If you omit them, you get the older (Word 97) behavior of a 

table that doesn't resize as you fill it. However, you can change that behavior. The AllowAutoFit 

property and AutoFitBehavior method control this resizing capability. 

Even if you're not allowing automatic resizing of columns, the AutoFit method of the Column 

object lets you resize individual columns based on their content. Rather than having cells change 

size as data is entered, you apply the changes once you've put something into the table. Column's 

SetWidth method lets you set a column to a specific width, in points. 

Once you've added a table interactively, the Table Properties dialog on the Table menu allows 

you to adjust various characteristics of the table as a whole and of the individual rows, columns 

and cells. Figure 8 shows the Row page of that dialog. With Automation, you use various 

properties of the Table, Row, Column and Cell objects and the Rows, Columns and Cells 

collections to make these adjustments. 

 



Automating Microsoft Word  FoxTeach 2001 

© 2001, Tamar E. Granor  Page 20 

Figure 8. Formatting a table. The Table Properties dialog lets you resize rows and columns, as 

well as specify other characteristics of tables and their components.   

Table 6 shows the most commonly used properties of Table.  

Table 6. Defining Tables. These properties of the Table object are the ones you're most likely to 

work with. 

Property Type Description 
Rows Object Pointer to the Rows collection for the table. 

Columns Object Pointer to the Columns collection for the table. 

Uniform Logical Indicates whether every row has the same number of 

columns. Read-only. 

Borders Object Pointer to the Borders collection for the table. 

Shading Object Pointer to the Shading object for the table. 

AllowAutoFit Logical Indicates whether columns are automatically resized as data 

is added to the table. Corresponds to the nTableBehavior 

parameter of the Tables.Add method. 

AllowPageBreaks Logical Indicates whether the table can be split over multiple pages in 

the document. 

AutoFormatType Numeric A constant indicating which, if any, of a set of predefined 

formats has been applied to the table. AutoFormats are 

applied with the AutoFormat method. Here are a few: 

wdTableFormatNone 0 

wdTableFormatSimple1 1 

wdTableFormatClassic1 4 

wdTableFormatColorful1 8 

wdTableFormatContemporary 35 

wdTableFormatElegant 36 

wdTableFormatGrid1 16 
 

Spacing Numeric Indicates the space between cells, in points. This is space that 

actually separates the cells, not the boundary between the cell 

border and the text. 

Row and Column, not surprisingly, have a number of properties in common, including Cells to 

point to a Cells collection and Shading to reference a Shading object. Row also has a Borders 

property that references a Borders collection, though Column does not. Both objects have logical 

IsFirst and IsLast properties that, as their names suggest, indicate whether the particular row or 

column is the first or last in the collection.  

At this point, the two objects part company, though there are still similarities. The size of a Row 

is determined by HeightRule and Height, as indicated in Table 7. Column width also uses two 

properties, PreferredWidth and PreferredWidthType, shown in Table 8.  

Row has one other size-related property, SpaceBetweenColumns. It indicates the distance 

between the cell boundaries and the text. The value of the property is half what you set in Word 

itself because that one is measured from the text in one cell to the text in the next cell. 

Row's AllowBreakAcrossRows property determines what happens when the contents of a row 

don't fit on the current page. If it's .T., the row can be split over two pages; if .F., a page break 

occurs before the row. 

When a table is split over multiple pages, rows whose HeadingFormat property is set to .T. are 

repeated. 

One big difference between Row and Column is that a Row can be a Range while a Column 

cannot. 



Automating Microsoft Word  FoxTeach 2001 

© 2001, Tamar E. Granor  Page 21 

Table 7. Determining Row Size. Two Row properties combine to let you indicate the height of the 

row. 

Property Type Description 
HeightRule Numeric Indicates the logic used to determine the height of this row. 

Use one of the following constants: 

wdRowHeightAuto 0 

wdRowHeightAtLeast 1 

wdRowHeightExactly 2 
 

Height Numeric The height for the row, if HeightRule is 

wdRowHeightExactly. The minimum height for the row, if 

HeightRule is wdRowHeightAtLeast. Ignored (and 

uninformative when queried) if HeightRule is 

wdRowHeightAuto; in that case, the row height is based on 

the row's contents. 

Table 8. Specifying Column Width. These two properties combine to determine the width of a 

column. 

Property Type Description 
PreferredWidth Numeric Desired width for this column, either in points or as a 

percentage of the overall window width. Interpretation is 

determined by PreferredWidthType. 

PreferredWidthType Numeric Indicates whether PreferredWidth is measured in points or 

percent, or is ignored. 

wdPreferredWidthAuto 0 Size column by 

contents. 

wdPreferredWidthPoints 1 Size column in points 

wdPreferredWidthPercent 2 Size column as percent 

of total window. 
 

Cell shares a number of properties of Table, Row and Column, including Borders, Shading, 

HeightRule, Height, PreferredWidth and PreferredWidthType. Table 9 shows some other 

properties unique to Cell. 

Table 9. Cell holdings. At the bottom of the table hierarchy, cells have quite a few properties. 

Here are some you're likely to deal with. 

Property Type Description 
Width Numeric The width of the cell in points. 

WordWrap Logical Indicates whether the text is wrapped into multiple lines and 

the cell height is increased to fit the entire contents. 

FitText Logical Indicates whether the display size of the text (but not the 

actual font size) is reduced in order to make the entire 

contents of the cell fit onto a single line. 

VerticalAlignment Numeric Indicates the vertical position of the text in the cell. 

WdAlignVerticalTop 0 

WdAlignVerticalCenter 1 

WdAlignVerticalBottom 3 
 

Table, Row and Cell all have Range properties, so that an entire table, a row or a cell can be 

easily converted to a range. This means that the same techniques work for inserting text into a 

table as for other parts of a document. However, a Range created from a cell contains a special 

end-of-cell marker. To access only the text in a cell, move the end of the range back one 

character. Either of the following does the trick: 

oRange.End = oRange.End – 1 

oRange.MoveEnd( wdCharacter, -1 ) 



Automating Microsoft Word  FoxTeach 2001 

© 2001, Tamar E. Granor  Page 22 

The program in Listing 1 opens TasTrade's Order History view and creates a Word table showing 

the order history for the current customer. It demonstrates a variety of features, including borders, 

shading and auto-sizing of columns. It's OrderTblFormat.PRG in the materials for this session. 

The results are shown in Figure 9.  

Listing 1. Creating a table. This program generates a table containing a customer's order history. 

* OrderTblFormat.PRG 

* © 2000, Tamar E. Granor and Della Martin 

* From:  Microsoft Office Automation with Visual FoxPro 

* Hentzenwerke Publishing. www.hentzenwerke.com 

 

* Create a Word table with order information for one customer 

* Set up the table with two rows, formatting the second row for 

* the data. Then add rows as needed for each record. 

 

#DEFINE wdStory                     6 

#DEFINE wdCollapseEnd               0 

#DEFINE CR                          CHR(13)                          

#DEFINE wdBorderTop                 -1  

#DEFINE wdLineStyleDouble           7 

#DEFINE wdAlignParagraphLeft        0 

#DEFINE wdAlignParagraphCenter      1 

#DEFINE wdAlignParagraphRight       2 

 

LOCAL oRange, oTable, nRecCount, nTotalOrders 

LOCAL nRow 

 

LOCAL oWord 

oWord = CreateObject("Word.Application") 

oWord.Documents.Add() 

 

OPEN DATABASE (_SAMPLES + "\Tastrade\Data\Tastrade") 

USE CUSTOMER 

GO INT(RECCOUNT() * RAND(-1)) + 1 && pick a customer at random 

 

* Open the Order History view, which contains 

* a summary of orders for one customer. 

SELECT 0 

USE "Order History" ALIAS OrderHistory 

 

* Find out how many records. 

nRecCount = _TALLY 

 

oRange = oWord.ActiveDocument.Range() 

 

* Set up a font for the table 

oRange.Font.Name = "Arial" 

oRange.Font.Size = 12 

 

* Move to the end of the document 

* Leave two empty lines 

oRange.MoveEnd( wdStory ) 

oRange.Collapse( wdCollapseEnd ) 

oRange.InsertAfter( CR + CR ) 

oRange.Collapse( wdCollapseEnd ) 

 

* Add a table with two rows 

oTable = oWord.ActiveDocument.Tables.Add( oRange, 2, 4) 

 

WITH oTable 

   * Set up borders and shading.  



Automating Microsoft Word  FoxTeach 2001 

© 2001, Tamar E. Granor  Page 23 

   * First, remove all borders 

   .Borders.InsideLineStyle = .F. 

   .Borders.OutsideLineStyle = .F. 

    

   * Shade first row for headings 

   .Rows[1].Shading.Texture = 100 

    

   * Put heading text in and set alignment 

   .Cell[1,1].Range.ParagraphFormat.Alignment = wdAlignParagraphRight 

   .Cell[1,1].Range.InsertAfter("Order Number") 

    

   .Cell[1,2].Range.ParagraphFormat.Alignment = wdAlignParagraphLeft 

   .Cell[1,2].Range.InsertAfter("Date") 

 

   .Cell[1,3].Range.ParagraphFormat.Alignment = wdAlignParagraphRight 

   .Cell[1,3].Range.InsertAfter("Total") 

 

   .Cell[1,4].Range.ParagraphFormat.Alignment = wdAlignParagraphCenter 

   .Cell[1,4].Range.InsertAfter("Paid?") 

    

   * Format data cells 

   .Cell[2,1].Range.ParagraphFormat.Alignment = wdAlignParagraphRight 

   .Cell[2,3].Range.ParagraphFormat.Alignment = wdAlignParagraphRight 

   .Cell[2,4].Range.ParagraphFormat.Alignment = wdAlignParagraphCenter 

    

   * Add data and format 

   * Compute total along the way 

   nTotalOrders = 0 

   FOR nRow = 1 TO nRecCount 

      WITH .Rows[nRow + 1] 

         .Cells[1].Range.InsertAfter( Order_Id ) 

         .Cells[2].Range.InsertAfter( TRANSFORM(Order_Date, "@D") ) 

         .Cells[3].Range.InsertAfter( TRANSFORM(Ord_Total, "$$$$$$$$$9.99") ) 

         * Put an X in fourth column, if paid; blank otherwise 

         IF Paid 

            .Cells[4].Range.InsertAfter("X") 

         ENDIF 

      ENDWITH 

       

      * Add a new row 

      .Rows.Add() 

       

      * Running Total 

      nTotalOrders = nTotalOrders + Ord_Total 

      SKIP 

   ENDFOR 

 

   * Add a double line before the totals 

   .Rows[nRecCount + 2].Borders[ wdBorderTop ].LineStyle = wdLineStyleDouble 

    

   * Put total row in  

   WITH .Rows[ nRecCount + 2] 

      .Cells[1].Range.InsertAfter("Total") 

      .Cells[3].Range.InsertAfter(TRANSFORM(nTotalOrders, "$$$$$$$$$9.99")) 

   ENDWITH 

    

   * Size columns. For simplicity, let Word 

   * do the work. 

   .Columns.Autofit 

ENDWITH 

RETURN 



Automating Microsoft Word  FoxTeach 2001 

© 2001, Tamar E. Granor  Page 24 

 

Figure 9. Using tables for data – A customer's order history looks good when poured into a Word 
table. 

The code creates a two-row table, inserts the headings, then formats the cells in the second row. 

The loop then inserts the data and adds a new row. Each new row picks up the formatting of the 

previous one, so the formats only have to be applied once. After all the data has been added, the 

AutoFit method of the Columns collection is called to resize the columns based on the data. 

You can combine the code (removing the part that chooses a customer record) with Styles.Prg 

(you can see the result in Figure 6), and you have a reasonably attractive order history report for a 

customer. Wrap that in a loop with a few more commands (such as InsertBreak to add page 

breaks) and you can produce order histories for all customers or a selected set. 

Irregular Tables 

Tables don't have to consist of simple grids. Not every row has to have the same number of 

columns. The Merge and Split methods of Cell and Cells let you combine and take apart groups 

of cells to create irregular tables. The Uniform property of Table indicates whether a table is 

regular or not; be sure to check it before using nested FOR EACH loops to try to process every 

row and column in a table. 

Merge works two ways. You can either call it with a range of cells to have them merged or you 

can call it for one cell and pass it another to have those two merged. Here are the two syntax 

formats: 

oCells.Merge() 

oFirstCell.Merge( oSecondCell ) 

For example, to combine the second and third cells in row 1 of table oTable, you can use this 

code (all of the following assume that oTable is a reference to the table you're working with): 

oTable.Cell(1,2).Merge( oTable.Cell(1,3) ) 

To change the fourth row of a table into a single cell, use code like this: 

oRange = oTable.Rows[4].Range() 

oRange.Cells.Merge() 

Figure 10 shows a table (that started out with five rows and seven columns) after making those 

two changes. 



Automating Microsoft Word  FoxTeach 2001 

© 2001, Tamar E. Granor  Page 25 

 

Figure 10. Irregular Table. Tables don't have to have the same number of columns in each row. 

The Merge and Split methods let you create irregular tables. 

Split takes a cell or collection of cells and divides it up into one or more cells. It can optionally 

merge the cells before splitting them. Again, there are two different forms for the method, 

depending whether you call it from a single cell or from a collection of cells: 

oCell.Split( nRows, nColumns) 

oCells.Split( nRows, nColumns [, lMergeFirst ] ) 

For example, to divide the first cell in row 3 into two cells in the same row, use this command: 

oTable.Cell(3,1).Split(1,2) 

To take the cells in the second row of a table, combine them, then split them into three, resulting 

in just three cells in that row: 

oTable.Rows[2].Cells.Split( 1, 3, .t.)   

If you omit the third parameter from that call (.t.), each cell in the row would be split into three. If 

you pass something other than 1 as the first parameter, the single row would become multiple 

rows in the table. 

Using Merge and Split, you can create extremely complex tables. While this provides for an 

attractive way to display data, keep in mind that it does make it harder to process the document. 

Simple FOR EACH loops through the Rows and Columns collections don't work when Uniform 

is .F. 

Merging documents with data 

Mail merge is one of the killer functions that put word processors on everybody's desks. The 

ability to write a document once, then merge it with data repeatedly to produce personalized 

documents made sense to businesses, academics, and home users, too.  

Word offers a variety of ways to merge data and documents. The best known is the most 

complex, using the built-in mail merge ability. However, that approach has some risks. 

Combining the built-in mail merge capabilities with some manual labor is better suited to 

automation. 

Word's mail merge structure 

Mail merge has been included in Word for many versions. Interactively, there's a wizard called 

the Mail Merge Helper (Figure 11) that guides users through the process. Even with this tool, 

though, setting up a new mail merge document, connecting it to data, and generating results is not 

simple. I've spent many hours on the phone walking relatives and friends through the process. 



Automating Microsoft Word  FoxTeach 2001 

© 2001, Tamar E. Granor  Page 26 

 

Figure 11. Mail Merge. This dialog walks interactive users through the steps needed to use 

Word's built-in mail merge facility. 

There are a number of objects behind the Mail Merge Helper. Help lists no fewer than eight 

different objects whose names begin with "MailMerge." But it's not the complexity of the object 

model that leads to a search for alternatives; it's the fragility of the connection between the 

document and the data. 

When you indicate that a Word document is a mail merge document, you specify the data source 

for the merge. It can be another Word document, an Excel worksheet, a text file, or come from 

any of a variety of databases files, including FoxPro, of course. For most data sources, Word uses 

ODBC to read the data. 

If the data file is deleted or moved or something happens to the ODBC driver, the merge stops 

working. Many people using FoxPro 2.x tables in mail merge had a nasty surprise when they 

installed Service Pack 3 for VFP 6 (or anything else that installed ODBC 4.0) because it disabled 

the ODBC driver for FoxPro 2.x tables and failed to automatically substitute the VFP driver for it. 

Mail merges that had been working for years failed. 

The need to deal with ODBC drivers and connections makes this approach harder and, especially, 

riskier than it needs to be. Unless you're dealing with extremely large tables, there are other, 

simpler, ways to solve this problem. If you are dealing with large tables, plan to control the 

ODBC aspects yourself rather than relying on what's on the user's machine. (You can set up 

ODBC connections programmatically, but that's beyond the scope of this session.) 

If you need to merge only small amounts of data, I recommend avoiding the ODBC aspects while 

taking advantage of Word's sophisticated mail merge capabilities. The way to do that is to create 

the data source for a mail merge on the fly and attaching it to the document just long enough to 

merge it. This strategy is appropriate when the amount of data to be merged is small to moderate, 

but may need to be reconsidered for extremely large data sets.  



Automating Microsoft Word  FoxTeach 2001 

© 2001, Tamar E. Granor  Page 27 

There are several ways to create the data source on the fly. The one shown here, creating an Excel 

worksheet, works for data sets up to over 16,000 records and is quite fast. For tiny data sets, 

another approach (not shown in this session) is to send the data directly from FoxPro into Word.  

The documents involved in mail merge 

Once you take ODBC out of the picture, mail merge involves two or three documents. The first is 

what Word calls the main document. That's the document that contains the text of the letter, 

envelope, labels or whatever it is you're trying to create. Most of this document looks like any 

other document. The exception is that, in a few places, it contains fields, special markers that 

indicate that something is to be substituted at that location. Word actually offers a wide range of 

fields, including such things as the date, time and page number. For mail merge, we're 

specifically interested in fields of the type MergeField. 

The second document in a mail merge is the data source. This is the document that contains the 

data to be substituted into the fields. When you use a native Word data source, it contains an 

ordinary Word table with one column for each MergeField. In the strategy described here, 

however, we'll create an Excel worksheet to use as the data source.  

The third document is optional. It's the result created by merging the main document with the 

data source. I prefer to merge to a new document rather than directly to the printer, but there may 

be situations where you choose to skip this step. 

The objects involved in mail merge 

The main object in mail merge is, in fact, called MailMerge – it's accessed through the 

MailMerge property of Document. MailMerge's Fields property references a MailMergeFields 

collection, made up of MailMergeField objects – these objects represent the mail merge fields in 

the main document. When the document is attached to a data source, the DataSource property of 

MailMerge accesses a MailMergeDataSource object. Its DataFields property references a 

collection of MailMergeDataField objects that provide information about the fields in the data 

source. MailMergeDataSource also has a FieldNames property that references a 

MailMergeFieldNames collection with information about the field names for the data. 

If this seems like a lot of objects, that's because it is, but in the strategy described here, you'll 

need to work directly with only the MailMerge and MailMergeFields objects.  

Creating a main document 

The first step is creating a main document. There are several ways to do this, not all involving 

Automation. Your users may simply create a main document using the Mail Merge Helper. The 

problem with that approach is that such documents will have data sources attached, but there are 

some solutions (discussed below). 

You can build main documents with Automation just like other documents. In fact, you can also 

use a hybrid approach, initially setting up the document with Automation, then allowing a user to 

edit it manually. 

To add a mail merge field to a document, use the Add method of the MailMergeFields collection. 

It calls for two parameters, as follows: 

oDocument.MailMerge.Fields.Add( oRange, cField ) 



Automating Microsoft Word  FoxTeach 2001 

© 2001, Tamar E. Granor  Page 28 

 

oRange Reference to a range where the mail merge field is to be added. 

cField The mail merge field to be inserted. 

Attaching a data source 

One thing that makes the Mail Merge Helper so helpful is that it provides a list of the fields in the 

data source and lets you choose from that list as you create the main document. Figure 12 shows 

part of the Mail Merge toolbar with the Insert Merge Field dropdown open, showing a list of the 

fields from TasTrade's Employee table. 

 

Figure 12. Adding fields interactively. When a main document is attached to a data source, you 

can add fields by choosing them from the Mail Merge toolbar. 

Using header sources for field lists 

If we want users to be able to create and edit main documents, we need a way to provide them 

with a list of fields, even though we don't want to create permanent connections between main 

documents and data sources. Several methods of the MailMerge object let us set up field lists. 

There are two kinds of connections a main document can have to data. It can be connected to an 

actual data source that contains records available for merging. However, a main document can 

instead be connected to a header source, a document that provides only field names for the 

merge, but no actual merge data.  

The advantage of a header source is that it's small and easy to create. We can use a header source 

to provide users with a list of fields while creating or editing the main document, but wait to 

create the complete data source until the user is ready for the actual merge. We can also create the 

header source and hide it from the user, when that's an appropriate strategy (such as where users 

are known to delete files they shouldn't.) 

Listing 2 is a program that attaches a header source to a main document, based on the field list in 

a table or view. The key to the whole process is calling the CreateHeaderSource method of 



Automating Microsoft Word  FoxTeach 2001 

© 2001, Tamar E. Granor  Page 29 

MailMerge – the rest is just typical FoxPro string manipulation. (This program is 

AltCreateHeaderSource.PRG in the materials for this session.) You might call this routine like 

this: 

DO CreateHeaderSource WITH oDocument, _SAMPLES+"TasTrade\Data\Employee", ; 

                           "C:\Temp\EmployeeHeader.DOC" 

Listing 2. Creating a header source. This program generates a header source on the fly from any 

table or view and attaches it to a document. 

* AltCreateHeaderSource.PRG 

* © 2000, Tamar E. Granor and Della Martin 

* Derived From:  Microsoft Office Automation with Visual FoxPro 

* Hentzenwerke Publishing. www.hentzenwerke.com 

 

* Create a header source for the current document  

* based on a table or view 

* Assumes: 

*      Word is open. 

 

LPARAMETERS oDocument, cCursor, cDocument 

   * oDocument = the document for which a header source is to be created. 

   * cCursor = the filename, including path, of the table or view 

   * cDocument = the filename, including path, where the  

   *                         header source document is to be stored. 

 

* Check parameters 

IF PCOUNT()<3 

   MESSAGEBOX("Must provide table/view name and document name") 

   RETURN .F. 

ENDIF 

 

IF VarType(oDocument) <> "O" 

   MESSAGEBOX("No document specified") 

   RETURN .F. 

ENDIF 

 

IF VarType(cCursor) <> "C" OR EMPTY(cCursor) 

   MESSAGEBOX("Table/View name must be character") 

   RETURN .F. 

ENDIF 

 

IF VarType(cDocument) <> "C" OR EMPTY(cDocument) 

   MESSAGEBOX("Document name must be character") 

   RETURN .F. 

ENDIF 

 

LOCAL nFieldCount, cFieldList, aFieldList[1], nField 

 

* Open the table/view 

USE (cCursor) AGAIN IN 0 ALIAS MergeCursor 

SELECT MergeCursor 

 

* Get a list of fields 

nFieldCount = AFIELDS( aFieldList, "MergeCursor" ) 

* Go through the list, creating a comma-separated string 

cFieldList = "" 

FOR nField = 1 TO nFieldCount 

   IF NOT INLIST( aFieldList[ nField, 2], "G", "M" ) 

      * Can't use General or Memo fields 

      cFieldList = cFieldList + aFieldList[ nField, 1] + "," 

   ENDIF 

ENDFOR 



Automating Microsoft Word  FoxTeach 2001 

© 2001, Tamar E. Granor  Page 30 

cFieldList = LEFT( cFieldList, LEN(cFieldList) - 1 ) 

 

* Attach the header to the document 

oDocument.MailMerge.CreateHeaderSource( cDocument, , , cFieldList ) 

 

USE IN MergeCursor 

 

RETURN 

The resulting header file is a Word document consisting of a one-row table, with each column 

containing a fieldname. 

When you open a main document interactively and the header source or data source is missing, 

Word insists that you either find the missing source or take action. In Word 2000, when the same 

thing happens with Automation, Word simply opens the file and detaches the header source or 

data source itself. (Unfortunately, in Word 97, when you open a main document with automation 

and the data source is missing, Word insists on your finding the missing data source, though it's 

surprisingly inventive if you point to the wrong file.) 

It's easy to change the header source or data source attached to a main document. The 

OpenHeaderSource method of MailMerge attaches an existing header source to a main document. 

OpenDataSource attaches an existing data source to a main document. Both take long lists of 

parameters, but in each case, only the first is required – it's the name of the header/data source 

file, including path. Here's an example: 

oDocument.MailMerge.OpenHeaderSource( "C:\Temp\EmployeeList.DOC" ) 

Using a data source at merge time 

The header source allows your users to create their own main documents using a list of merge 

fields. Header sources contain no data. You also need the ability to create and attach a complete 

data source on the fly. The CreateDataSource method lets you build a new data source. Listing 3, 

included as Alt2CreateDataSource.PRG in the session materials, creates and attaches a data 

source to a document. It accepts the same three parameters as AltCreateHeaderSource in Listing 

2. For speed, rather than creating Word document and putting all the data in the table, this routine 

copies the data to an Excel worksheet and attaches that as the data source. This approach is 

limited to 16,383 records, the maximum number that VFP can copy to an Excel worksheet. 

Listing 3. Build a better data source. This program creates a data source on the fly. Rather than 

dealing with ODBC, send just the records and fields you need to a Excel worksheet, which is then 

attached to the main document, when you're actually ready to do a mail merge. 

* Alt2CreateDataSource.PRG 

* © 2000, Tamar E. Granor and Della Martin 

* Derived From:  Microsoft Office Automation with Visual FoxPro 

* Hentzenwerke Publishing. www.hentzenwerke.com 

 

* Create a data source for the current document  

* based on a table or view 

* Assumes: 

*      Word is open. 

*      Excel is installed. 

 

#DEFINE wdSeparateByTabs 1 

#DEFINE wdFormatDocument 0 

 

LPARAMETERS oDocument, cCursor, cDocument 

   * oDocument = the document for which a header source is to be created. 

   * cCursor = the filename, including path, of the table or view.  



Automating Microsoft Word  FoxTeach 2001 

© 2001, Tamar E. Granor  Page 31 

   *                   Data should already be filtered and sorted. 

   * cDocument = the filename, including path, where the  

   *                         data source document is to be stored. 

 

* Check parameters 

IF PCOUNT()<3 

   MESSAGEBOX("Must provide table/view name and document name") 

   RETURN .F. 

ENDIF 

 

IF VarType(oDocument) <> "O" 

   MESSAGEBOX("No document specified") 

   RETURN .F. 

ENDIF 

 

IF VarType(cCursor) <> "C" OR EMPTY(cCursor) 

   MESSAGEBOX("Table/View name must be character") 

   RETURN .F. 

ENDIF 

 

IF VarType(cDocument) <> "C" OR EMPTY(cDocument) 

   MESSAGEBOX("Document name must be character") 

   RETURN .F. 

ENDIF 

 

LOCAL nFieldCount, cFieldList, aFieldList[1], nField 

LOCAL oWord, oRange, oSourceDoc, oRow, oTable 

 

* Get a reference to Word 

oWord = oDocument.Application 

 

* Turn off pagination on the fly 

oWord.Options.Pagination = .F. 

 

* Open the table/view 

USE (cCursor) AGAIN IN 0 ALIAS MergeCursor 

SELECT MergeCursor 

 

cTempFile = ADDBS(SYS(2023)) + SYS(3) + ".XLS" 

COPY TO (cTempFile) TYPE XL5 

 

oDocument.MailMerge.OpenDataSource( cTempfile, 0, .F.,; 

                                    ,.t.,,,,,,,"Entire Spreadsheet" ) 

 

USE IN MergeCursor 

 

 

RETURN 

Performing the mail merge 

Once you've jumped through all the hoops to get the data there, actually performing the mail 

merge is the easy part. Just call the MailMerge object's Execute method and -poof!- the main 

document and the data source are merged to a new document. This is all it takes: 

oDocument.MailMerge.Execute() 

Of course, you probably want to exercise more control than that over the merge. Various 

properties of the MailMerge object let you set things up before you call Execute. The two you're 

most likely to deal with are Destination and SuppressBlankLines. SuppressBlankLines is a logical 

that indicates whether lines in the document that are totally empty should be eliminated. The 

default is .T. 



Automating Microsoft Word  FoxTeach 2001 

© 2001, Tamar E. Granor  Page 32 

Destination determines where the merge results are sent. The default is wdSendToNewDocument 

(0). Other choices are wdSendToPrinter (1), wdSendToEmail (2) and wdSendToFax (3). There 

are several properties, all of which begin with "Mail", dedicated to particulars of the case where 

results are sent to email. 

Putting mail merge together 

Since mail merge is a two-step process, this final example has two parts. Listing 4 shows a 

program (AltBuildMerge.PRG in the session materials) that creates a template for product 

information sheets for Tasmanian Traders. The template is a mail merge main document attached 

to a header source only. The program runs a query that collects the data needed (in a real 

application, you'd probably have a view for this data), then calls on 

Alt2CreateHeaderSource.PRG (Listing 2 above) to attach the header. It then populates and saves 

the template. Figure 13 shows the completed template.  

Listing 4. Creating a mail merge template. This program generates both a header source and a 

main document, in this case, a template for a main document. 

* AltBuildMerge.PRG 

* © 2000, Tamar E. Granor and Della Martin 

* Derived From:  Microsoft Office Automation with Visual FoxPro 

* Hentzenwerke Publishing. www.hentzenwerke.com 

 

* Create a main document for product sheets. 

* The document is created as a template so that it can be  

* then be used with File-New. 

 

#DEFINE CR CHR(13) 

#DEFINE TAB CHR(9) 

#DEFINE wdHeaderFooterPrimary 1 

#DEFINE wdGray25 16 

#DEFINE wdAlignParagraphCenter 1 

#DEFINE wdCollapseEnd 0 

#DEFINE wdParagraph 4 

#DEFINE wdWord 2 

#DEFINE wdLineStyleDouble 7 

#DEFINE wdUserTemplatesPath 2 

#DEFINE wdGoToBookmark -1 

 

LOCAL oWord, oDocument, oRange, oBorderRange, cTemplatePath 

 

* Open Word and create a new template document 

oWord = CreateObject("Word.Application") 

oDocument = oWord.Documents.Add(, .T.) 

 

* Create a cursor of all products 

OPEN DATABASE _SAMPLES + "TasTrade\Data\TasTrade" 

SELECT product_name, english_name, category_name, ; 

           quantity_in_unit, unit_price, ; 

           company_name, contact_name, contact_title, ; 

           address, city, region, postal_code, country, ; 

           phone, fax ; 

   FROM products ; 

      JOIN supplier ; 

         ON products.supplier_id = supplier.supplier_id ; 

      JOIN category ; 

         ON products.category_id = category.category_id ; 

   ORDER BY Category_Name, Product_Name ; 

   INTO CURSOR ProductList 



Automating Microsoft Word  FoxTeach 2001 

© 2001, Tamar E. Granor  Page 33 

    

* Attach a header source to the template document 

DO AltCreateHeaderSource WITH oDocument, DBF("ProductList"), ; 

   AddBs(SYS(2023))+"ProdHeader.DOC" 

 

USE IN ProductList 

 

* Now set up the product sheet 

* First, assign a font for Normal 

WITH oDocument.Styles["Normal"].Font 

   .Name = "Times New Roman" 

   .Size = 12 

ENDWITH 

 

* Add a header  

WITH oDocument.Sections[1].Headers[ wdHeaderFooterPrimary ] 

   oRange = .Range() 

   WITH oRange 

      .Text = "Tasmanian Traders" 

      .Style = oDocument.Styles["Heading 1"] 

      .ParagraphFormat.Alignment = wdAlignParagraphCenter 

      .Shading.BackgroundPatternColorIndex  = wdGray25 

   ENDWITH 

ENDWITH 

 

* Page heading 

oRange = oDocument.Range(0,0) 

WITH oRange 

   .Style = oDocument.Styles[ "Heading 2" ] 

   .ParagraphFormat.Alignment = wdAlignParagraphCenter 

   .InsertAfter("Product Information" + CR + CR ) 

   .Collapse( wdCollapseEnd ) 

    

   * First, add fixed text and set up bookmarks where we want 

   * the merge fields to go. 

   * Add Product Category 

   .Style = oDocument.Styles[ "Heading 3"] 

   .InsertAfter( "Product Category: "  ) 

   .Collapse( wdCollapseEnd ) 

   oDocument.Bookmarks.Add( "ProductCategory", oRange ) 

   .InsertAfter( CR ) 

   .Expand( wdParagraph ) 

   .Borders.OutsideLineStyle = wdLineStyleDouble 

   .Collapse( wdCollapseEnd ) 

   .InsertAfter( CR ) 

 

   * Add Product Name 

   .InsertAfter( "Product Name: ") 

   .Collapse( wdCollapseEnd ) 

   oDocument.Bookmarks.Add("ProductName", oRange ) 

   .Collapse( wdCollapseEnd ) 

   .InsertAfter( CR ) 

   oBorderRange = oRange.Paragraphs[1].Range() 

   .InsertAfter( "English Name: ") 

   .Collapse( wdCollapseEnd ) 

   oDocument.Bookmarks.Add("EnglishName", oRange) 

   .InsertAfter( CR ) 

   .Collapse( wdCollapseEnd ) 

   oBorderRange.MoveEnd( wdParagraph, 1) 

   oBorderRange.Borders.OutsideLineStyle = wdLineStyleDouble 

          

   * Now units and price 

   .Style = oDocument.Styles[ "Normal" ] 



Automating Microsoft Word  FoxTeach 2001 

© 2001, Tamar E. Granor  Page 34 

   .InsertAfter( CR + "Sold in units of: " ) 

   .Collapse( wdCollapseEnd ) 

   oDocument.Bookmarks.Add("Quantity", oRange ) 

   .InsertAfter( " at a price of: ") 

   .Collapse( wdCollapseEnd ) 

   oDocument.Bookmarks.Add("UnitPrice", oRange) 

   .InsertAfter( " per unit." + CR + CR ) 

   .Collapse( wdCollapseEnd ) 

 

   * Now supplier information  

   * To make things line up, we'll need a tab, so set  it up. 

   WITH oDocument.Paragraphs.TabStops 

      .ClearAll() 

      .Add( oWord.InchesToPoints( 1 ) ) 

   ENDWITH 

    

   .InsertAfter( "Supplier: " + TAB ) 

   .Collapse( wdCollapseEnd ) 

   oDocument.Bookmarks.Add("CompanyName", oRange) 

   .InsertAfter( CR + TAB) 

   .Collapse( wdCollapseEnd ) 

   oDocument.Bookmarks.Add("Address", oRange) 

   .InsertAfter( CR + TAB ) 

   .Collapse( wdCollapseEnd ) 

   oDocument.Bookmarks.Add("City", oRange) 

   .InsertAfter( CR + TAB ) 

   .Collapse( wdCollapseEnd ) 

   oDocument.Bookmarks.Add("Region", oRange) 

   .InsertAfter( CR + TAB ) 

   .Collapse( wdCollapseEnd ) 

   oDocument.Bookmarks.Add("PostalCode", oRange) 

   .InsertAfter( CR + TAB ) 

   .Collapse( wdCollapseEnd ) 

   oDocument.Bookmarks.Add("Country", oRange) 

   .InsertAfter( CR ) 

   .InsertAfter( "Contact: " + TAB ) 

   .Collapse( wdCollapseEnd ) 

   oDocument.Bookmarks.Add("ContactName", oRange) 

   .InsertAfter( CR + TAB) 

   .Collapse( wdCollapseEnd ) 

   oDocument.Bookmarks.Add("ContactTitle", oRange) 

   .InsertAfter( CR ) 

   .InsertAfter( "Phone: " + TAB ) 

   .Collapse( wdCollapseEnd ) 

   oDocument.Bookmarks.Add("Phone", oRange ) 

   .InsertAfter( CR ) 

   .InsertAfter( "Fax: " + TAB ) 

   .Collapse( wdCollapseEnd ) 

   oDocument.Bookmarks.Add("Fax", oRange) 

   .InsertAfter( CR ) 

 

* Now insert a mail merge field at each bookmark 

 

   oRange = oDocument.Bookmarks["ProductCategory"].Range() 

   oDocument.MailMerge.Fields.Add( oRange, "Category_Name") 

    

   oRange = oDocument.Bookmarks["ProductName"].Range() 

   oDocument.MailMerge.Fields.Add( oRange, "Product_Name") 

    

   oRange = oDocument.Bookmarks["EnglishName"].Range() 

   oDocument.MailMerge.Fields.Add( oRange, "English_Name") 

    

   oRange = oDocument.Bookmarks["Quantity"].Range() 



Automating Microsoft Word  FoxTeach 2001 

© 2001, Tamar E. Granor  Page 35 

   oDocument.MailMerge.Fields.Add( oRange, "Quantity_In_Unit") 

 

   oRange = oDocument.Bookmarks["UnitPrice"].Range() 

   oDocument.MailMerge.Fields.Add( oRange, "Unit_Price") 

    

   oRange = oDocument.Bookmarks["CompanyName"].Range() 

   oDocument.MailMerge.Fields.Add( oRange, "Company_Name") 

    

   oRange = oDocument.Bookmarks["Address"].Range() 

   oDocument.MailMerge.Fields.Add( oRange, "Address") 

    

   oRange = oDocument.Bookmarks["City"].Range() 

   oDocument.MailMerge.Fields.Add( oRange, "City") 

    

   oRange = oDocument.Bookmarks["Region"].Range()    

   oDocument.MailMerge.Fields.Add( oRange, "Region") 

    

   oRange = oDocument.Bookmarks["PostalCode"].Range()    

   oDocument.MailMerge.Fields.Add( oRange, "Postal_Code") 

    

   oRange = oDocument.Bookmarks["Country"].Range() 

   oDocument.MailMerge.Fields.Add( oRange, "Country") 

    

   oRange = oDocument.Bookmarks["ContactName"].Range()    

   oDocument.MailMerge.Fields.Add( oRange, "Contact_Name") 

    

   oRange = oDocument.Bookmarks["ContactTitle"].Range()    

   oDocument.MailMerge.Fields.Add( oRange, "Contact_Title") 

    

   oRange = oDocument.Bookmarks["Phone"].Range()    

   oDocument.MailMerge.Fields.Add( oRange,"Phone") 

    

   oRange = oDocument.Bookmarks["Fax"].Range()    

   oDocument.MailMerge.Fields.Add( oRange,"Fax") 

 

ENDWITH 

 

cTemplatePath = oWord.Options.DefaultFilePath( wdUserTemplatesPath ) 

oDocument.SaveAs( AddBs(cTemplatePath) + "ProdInfo") 

 

oWord.Quit() 

 

RETURN 



Automating Microsoft Word  FoxTeach 2001 

© 2001, Tamar E. Granor  Page 36 

 

Figure 13. Creating mail merge documents. This template was created by Listing 4. It has a 

header source and is based on a query from the TasTrade database. 

The second part of the process is to create an actual data source when you're ready to perform the 

mail merge. Listing 5 shows the code (Alt2DoMerge.PRG in the session materials) that creates 

the new document from the template, calls on Alt2CreateDataSource.PRG (Listing 3 above), then 

performs the merge and shows the result. Figure 14 shows part of the result. 

Listing 5. Performing a merge. This code uses the template created by Listing 4 to generate a new 

document, creates a data source, and executes the merge. 

* Alt2DoMerge.PRG 

* © 2000, Tamar E. Granor and Della Martin 

* Derived From:  Microsoft Office Automation with Visual FoxPro 

* Hentzenwerke Publishing. www.hentzenwerke.com 

 

* Create the Product Information sheets based on the 

* template, using mail merge 

#DEFINE wdUserTemplatesPath 2 

#DEFINE wdWindowStateMaximize 1 

 

LOCAL cTemplatePath, oDocument, oMergedDocument 

 

* Create an instance of Word.  

* Make it public for demonstration purposes.  

RELEASE ALL LIKE o* 

PUBLIC oWord 

oWord = CreateObject("Word.Application") 

 

* Make Word visible. 

* oWord.Visible = .t. 

 

* Create a new document based on the template 



Automating Microsoft Word  FoxTeach 2001 

© 2001, Tamar E. Granor  Page 37 

cTemplatePath = oWord.Options.DefaultFilePath( wdUserTemplatesPath ) 

oDocument = oWord.Documents.Add( ADDBS(cTemplatePath) + "ProdInfo" ) 

 

* Run the query to create a cursor of all products 

* Create a cursor of all products 

OPEN DATABASE _SAMPLES + "TasTrade\Data\TasTrade" 

SELECT product_name, english_name, category_name, ; 

           quantity_in_unit, TRANSFORM(unit_price, "@$") AS unit_price, ; 

           company_name, contact_name, contact_title, ; 

           address, city, region, postal_code, country, ; 

           phone, fax ; 

   FROM products ; 

      JOIN supplier ; 

         ON products.supplier_id = supplier.supplier_id ; 

      JOIN category ; 

         ON products.category_id = category.category_id ; 

   ORDER BY Category_Name, Product_Name ; 

   INTO CURSOR ProductList 

 

* Now create and attach a data source 

DO Alt2CreateDataSource WITH oDocument, ; 

   DBF("ProductList"), AddBs(SYS(2023)) + "ProdData" 

 

USE IN ProductList 

 

* Now make Word visible 

oWord.Visible = .T. 

 

* Perform the mail merge 

oDocument.MailMerge.Execute() 

 

oMergedDocument = oWord.ActiveDocument 

 

WITH oMergedDocument 

   IF .ActiveWindow.WindowState <> wdWindowStateMaximize 

      * Move it to make it visible - for some reason, it comes up 

      * way off screen 

      .ActiveWindow.Left = 0 

      .ActiveWindow.Top = 0 

   ENDIF 

    

   * Preview it 

   .PrintPreview() 

ENDWITH 

 

RETURN 



Automating Microsoft Word  FoxTeach 2001 

© 2001, Tamar E. Granor  Page 38 

 

Figure 14. Mail merge results. The product information sheet created by the programs in Listings 
4 and 6. There's one sheet for each product. 

Summing Up 

This session covers just a small fraction of what Microsoft Word can be called on to do through 

Automation. With very few exceptions, if you can do it interactively in Word, you can automate 

it. I hope it's given you some ideas as to how to put Word to work for you. 

Acknowledgements 

These notes are adapted from Microsoft Office Automation with Visual FoxPro by Tamar E. 

Granor and Della Martin, Hentzenwerke Press (2000). Thanks to my co-author, Della, and to our 

technical editor, Ted Roche, for their contributions and to publisher, Whil Hentzen, for allowing 

me to use this material here. 

© 2001, Tamar E. Granor 


